A cell-microelectronic sensing technique for the screening of cytoprotective compounds.

نویسندگان

  • Béla Ozsvári
  • László G Puskás
  • Lajos I Nagy
  • Iván Kanizsai
  • Márió Gyuris
  • Ramóna Madácsi
  • Liliána Z Fehér
  • Domokos Gerö
  • Csaba Szabó
چکیده

In recent years, a new cell-based high throughput paradigm has emerged, which seeks to identify novel, pharmacologically active cytoprotective compounds. The essence of this approach is to create experimental models of cell injury relevant for a particular disease by establishing in vitro cell-based models, followed by high-throughput testing of compounds that affect the cellular response in a desired manner. Prior approaches typically used simple end-point analyses. To assess the cytoprotective effects of novel drug candidates in real-time, we have applied a cell-microelectronic sensing technique (RT-CES), which measures changes in the impedance of individual microelectronic wells that correlates linearly with cell index (reflecting cell number, adherence and cell growth), thereby allowing the continuous determination of cell viability during oxidative stress. In vitro cytotoxicity was elicited by hydrogen peroxide in myocytes (H9c2) and hepatocytes (Hep3B). Cells were post-treated at 30 min with various reference molecules and novel cytoprotective compounds. Cytoprotection detected in the RT-CES system correlated well with the results of two classical end-point-based methods (improvement in MTT and reduction of LDH release). The RT-CES method, when used as described in the current report, is suitable for the screening of molecular libraries to identify molecules or molecule combinations that attenuate oxidative stress-induced cell damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-Bio-Technology and Sensing Chips: New Systems for Detection in Personalized Therapies and Cell Biology

Further advances in molecular medicine and cell biology also require new electrochemical systems to detect disease biomarkers and therapeutic compounds. Microelectronic technology offers powerful circuits and systems to develop innovative and miniaturized biochips for sensing at the molecular level. However, microelectronic biochips proposed in the literature often do not show the right specifi...

متن کامل

Cytoprotective Effects of Hydrophilic and Lipophilic Extracts of Pistacia vera against Oxidative Versus Carbonyl Stress in Rat Hepatocytes

This study was conducted to evaluate the cytoprotection of various extracts and bioactive compounds found in Pistacia vera againts cytotoxicity, ROS formation, lipid peroxidation, protein carbonylation , mitochondrial and lysosomal membrane damages in cell toxicity models of diabetes related carbonyl (glyoxal) and oxidative stress (hydroperoxide). Methanol, water and ethyl acetate were used to ...

متن کامل

Cytoprotective Effects of Hydrophilic and Lipophilic Extracts of Pistacia vera against Oxidative Versus Carbonyl Stress in Rat Hepatocytes

This study was conducted to evaluate the cytoprotection of various extracts and bioactive compounds found in Pistacia vera againts cytotoxicity, ROS formation, lipid peroxidation, protein carbonylation , mitochondrial and lysosomal membrane damages in cell toxicity models of diabetes related carbonyl (glyoxal) and oxidative stress (hydroperoxide). Methanol, water and ethyl acetate were used to ...

متن کامل

New Platforms For Drug Screening And Toxicology: Necessity Or Need?

The liver is the largest internal organ in the human body that is responsible for more than 500 vital functions, including biosynthesis of major plasma proteins, immunity against infectious pathogens, balancing energy metabolism and xenobiotics biotransformation (1). One of the main functions of the liver is an important role in drug metabolism (2). Since developing new drug compounds into mark...

متن کامل

Cytoprotective and antioxidant effects of Echium amoenum anthocyanin-rich extract in human endothelial cells (HUVECs)

Objective: Echium amoenum Fisch. & C.A. Mey. is used for the treatment of various diseases in traditional medicine. This plant is a major source of anthocyanins with beneficial cardiovascular properties such as anti-atherosclerotic and antihypertensive effects. In the present study, the protective and antioxidant effects of anthocyanin-rich E. amoenum extract were evaluated on human vascular en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2010